GA-KDE-Bayes: an evolutionary wrapper method based on non-parametric density estimation applied to bioinformatics problems
نویسندگان
چکیده
This paper presents an evolutionary wrapper method for feature selection that uses a non-parametric density estimation method and a Bayesian Classifier. Non-parametric methods are a good alternative for scarce and sparse data, as in Bioinformatics problems, since they do not make any assumptions about its structure and all the information come from data itself. Results show that local modeling provides small and relevant subsets of features when comparing to results available on literature.
منابع مشابه
Multivariate online kernel density estimation with Gaussian kernels
We propose a novel approach to online estimation of probability density functions, which is based on kernel density estimation (KDE). The method maintains and updates a non-parametric model of the observed data, from which the KDE can be calculated. We propose an online bandwidth estimation approach and a compression/revitalization scheme which maintains the KDE’s complexity low. We compare the...
متن کاملتخمین احتمال بزرگی زمینلغزشهای رخداده در حوزه آبخیز پیوهژن (استان خراسان رضوی)
Knowing the number, area, and frequency of landslides occurred in each area has a prominent role in the long-term evolution of area dominated by landslides and can be used for analyzing of susceptibility, hazard, and risk. In this regard, the current research is trying to consider identified landslides size probability in the Pivejan Watershed, Razavi Khorasan Province. In the first step, lands...
متن کاملIdentification of Hazardous Situations using Kernel Density Estimation Method Based on Time to Collision, Case study: Left-turn on Unsignalized Intersection
The first step in improving traffic safety is identifying hazardous situations. Based on traffic accidents’ data, identifying hazardous situations in roads and the network is possible. However, in small areas such as intersections, especially in maneuvers resolution, identifying hazardous situations is impossible using accident’s data. In this paper, time-to-collision (TTC) as a traffic conflic...
متن کاملSemi-supervised kernel density estimation for video annotation
Insufficiency of labeled training data is a major obstacle for automatic video annotation. Semi-supervised learning is an effective approach to this problem by leveraging a large amount of unlabeled data. However, existing semi-supervised learning algorithms have not demonstrated promising results in largescale video annotation due to several difficulties, such as large variation of video conte...
متن کاملA Comparative Study of Bandwidth Choice in Kernel Density Estimation for Naive Bayesian Classification
Kernel density estimation (KDE) is an important method in nonparametric learning. While KDE has been studied extensively in the context of accuracy of density estimation, it has not been studied extensively in the context of classification. This paper studies nine bandwidth selection schemes for kernel density estimation in Naive Bayesian classification context, using 52 machine learning benchm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013